
Modules, ports, instantiation
I Development of timing and state diagrams refined the block diagram
I Cleaned up and added better names, added detail

FILE: REVISION:

DRAWN BY: PAGE OF

TITLE

multiplicand_reg

prod_reg_high

32

32

mult3_ctl

multiplier_bit_0

a_in b_in

32

shift

load

64

32

start

32

32 32

32

done

shift

load

prod_reg_shift_rt

reg_a

’0

0 1
S start

start

startB

L
S

product

prod_reg_ld_high

prod_reg_low

D

Q

D

Q

D

Q

Modules, ports, instantiation
I As its reasonable, we want to maintain our partitioning in SV
I We have two mechanisms to do this: modules and always blocks

FILE: REVISION:

DRAWN BY: PAGE OF

TITLE

multiplicand_reg

prod_reg_high

32

32

mult3_ctl

multiplier_bit_0

a_in b_in

32

shift

load

64

32

start

32

32 32

32

done

shift

load

prod_reg_shift_rt

reg_a

’0

0 1
S start

start

startB

L
S

product

prod_reg_ld_high

prod_reg_low

D

Q

D

Q

D

Q

Modules, ports, instantiation
I Simple functionality belongs in an always block.
I If considerable complexity or natural boundary (data vs. control)

exists, a module is appropriate.
I Our datapath logic is simple and will be in always blocks
I ”mult3 ctl” is a natural partitioning boundary and will be in its own

module.

FILE: REVISION:

DRAWN BY: PAGE OF

TITLE

multiplicand_reg

prod_reg_high

32

32

mult3_ctl

multiplier_bit_0

a_in b_in

32

shift

load

64

32

start

32

32 32

32

done

shift

load

prod_reg_shift_rt

reg_a

’0

0 1
S start

start

startB

L
S

product

prod_reg_ld_high

prod_reg_low

D

Q

D

Q

D

Q

Modules, ports, instantiation

The module is the basic unit of hierarchy in Verilog
I Modules describe:

I boundaries [module, endmodule]
I inputs and outputs [ports]
I how it works [behavioral or RTL code]

I Can be a single element or collection of lower level modules

I Module can describe a hierarchical design (a module of modules)

I A module should be contained within one file

I Module name should match the file name

I Module mult3 ctl resides in file named mult3 ctl.sv

I Multiple modules can reside within one file (not recommended)

Modules, ports, instantiation
I Modules are declared with their name and ports

module mult3_ctl(

input reset ,

input clk ,

input start , //begin multiplication

input multiplier_bit0 ,

output logic prod_reg_ld_high , //load high half of register

output logic prod_reg_shift_rt , //shift product register right

output logic done); // signal completion of mult op

I The Verilog declaration of the module corresponds directly to the
block diagram. The module mult3 ctl will reside inside mult3 ctl.sv

FILE: REVISION:

DRAWN BY: PAGE OF

TITLE

multiplicand_reg

prod_reg_high

32

32

mult3_ctl

multiplier_bit_0

a_in b_in

32

shift

load

64

32

start

32

32 32

32

done

shift

load

prod_reg_shift_rt

reg_a

’0

0 1
S start

start

startB

L
S

product

prod_reg_ld_high

prod_reg_low

D

Q

D

Q

D

Q

mult3_ctl

reset

clk

start

multiplier_bit0

prod_reg_ld_high

prod_reg_shift_rt

done

pin name

prod_reg_low[0]

wire name

module name

reset

clk

start done

prod_reg_ld_high

prod_reg_shift_rt

Modules, ports, instantiation

I Comments
I Comments are done just like C
I One line comments begin with //
I Multi-line comments start with /*, end with: */

I Identifiers
I Identifiers are names given to objects so that they may be referenced
I They start with alphabetic chars or underscore
I They cannot start with a number or dollar sign
I All identifiers are case sensitive unlike VHDL

Modules, ports, instantiation

I ANSI C Style Ports in System Verilog are declared as:
I port mode, port type, port width, port name... where:

I Port mode is input, output or inout
I Port type defaults to wire, outputs are usually type logic
I Port width is [MSB:LSB]
I Port name is simply the name of the port

input [31:0] register_in , // register input

output logic [31:0] register_out , // register output

I Input ports are understood as nets (wires) within the module, and
can only be read from.

I Output ports are understood as nets (wires) withing the module and
can be read from or written to if they are type logic.

I Inout ports are understood as nets (wires) withing the module and
can be read from or written to if they are type logic.

I Use inout ports for tri-state logic only.

Modules, ports, instantiation

Hierarchical Design

I Hierarchical designs have a top level module and lower level modules.

I Lower level modules (like mult3 ctl) are instantiated within the
higher level module (mult3)

FILE: REVISION:

DRAWN BY: PAGE OF

TITLE

mult3

reset

clk

start

product

done

64

a_in

b_in
32

32

mult3_ctl

reset

clk

start

multiplier_bit0

prod_reg_ld_high

prod_reg_shift_rt

done

’0
0 1

S

multiplicand_reg

D

Q

product_reg

D

Q

Modules, ports, instantiation

I Module mult3 is just a higher-level module, so we define it as before.

I Module mult3 will reside in another file called mult3.sv.

I The beginning of mult3.sv looks like this:

module mult3(

input reset ,

input clk ,

input [31:0] a_in ,

input [31:0] b_in ,

input start ,

output logic [63:0] product ,

output logic done);

Modules, ports, instantiation
I Module mult3 ctl is instantiated within mult3 as shown and is

concluded with the keyword endmodule

module mult3(

input reset ,

input clk ,

input [31:0] a_in ,

input [31:0] b_in ,

input start ,

output logic [63:0] product ,

output logic done);

//

// Other code goes in here

//

// instantiate the control module

mult3_ctl mult3_ctl_0(

.reset (reset),

.clk (clk),

.start (start),

.multiplier_bit0 (prod_reg_low [0]),

.prod_reg_ld_high (prod_reg_ld_high),

.prod_reg_shift_rt (prod_reg_shift_rt),

.done (done));

endmodule

Modules, ports, instantiation

I The instantiation associates a wire in an upper-level module with a
pin (or port) on a lower level module. Pins on left, wires on right.

FILE: REVISION:

DRAWN BY: PAGE OF

TITLE

multiplicand_reg

prod_reg_high

32

32

mult3_ctl

multiplier_bit_0

a_in b_in

32

shift

load

64

32

start

32

32 32

32

done

shift

load

prod_reg_shift_rt

reg_a

’0

0 1
S start

start

startB

L
S

product

prod_reg_ld_high

prod_reg_low

D

Q

D

Q

D

Q

mult3_ctl

reset

clk

start

multiplier_bit0

prod_reg_ld_high

prod_reg_shift_rt

done

pin name

prod_reg_low[0]

wire name

module name

reset

clk

start done

prod_reg_ld_high

prod_reg_shift_rt

// instantiate the control module

mult3_ctl mult3_ctl_0(

.reset (reset),

.clk (clk),

.start (start),

.multiplier_bit0 (prod_reg_low [0]), //LSB of product reg

.prod_reg_ld_high (prod_reg_ld_high),

.prod_reg_shift_rt (prod_reg_shift_rt),

.done (done));

Modules, ports, instantiation

Instantiation subtleties

I Ports of the upper-level module are understood to be wires within
that module.

I Wires connected to pins can have differing names.

I Wires and pins should not have differing widths!

I Followng the module name is an instance name that makes each
instantiation of the same module unique.

mult3_ctl mult3_ctl_0(

I Comment each line if designer intention is not crystal clear.

I This method of instantiation is called named association. Its the
preferred way of doing instantiation when pins/names differ.

Modules, ports, instantiation

I Its possible to instantiate using pin/wire position only.

I This is called positional association. Its a bad idea.

I For example:

// instantiate the control module

mult3_ctl mult3_ctl_0(reset ,clk ,start ,prod_reg_low [0],

prod_reg_ld_high , prod_reg_shift_rt ,done);

I How do you know pins and wires are connected correctly?

I Could you check it quickly if the module had 50 pins on it?

I What if you wanted to add wire in the middle of the list?

I Do not use Positional Association!

I It saves time once, and costs you dearly afterwords

Modules, ports, instantiation

Implicit Naming is useful when most pins/wires have the same name.

// instantiate the control module

mult3_ctl mult3_ctl_0(

.reset (reset),

.clk (clk),

.start (start),

.multiplier_bit0 (prod_reg_low [0]), // product reg LSB

.prod_reg_ld_high (prod_reg_ld_high),

.prod_reg_shift_rt (prod_reg_shift_rt),

.done (done));

// instantiate the control module

mult3_ctl mult3_ctl_0(

.reset ,

.clk ,

.start ,

.multiplier_bit0 (prod_reg_low [0]), //named association

.prod_reg_ld_high ,

.prod_reg_shift_rt ,

.done);

Implicit and named association forms can be mixed

Modules, ports, instantiation

If all pins and associated wires have the same name we can do this:

// instantiate the control module

mult3_ctl mult3_ctl_0 (.*); //now that ’s a short cut!

I This is the most powerful form of implicit association.

I This method is best reserved for top level testbench/top module
instantiation, else, it could hide intent.

Modules, ports, instantiation

Unconnected port pins may be left unconnected like this...

// instantiate the control module , don ’t need connection to done pin

mult3_ctl mult3_ctl_0(

.reset (reset),

.clk (clk),

.start (start),

.multiplier_bit0 (prod_reg_low [0]), // product reg LSB

.prod_reg_ld_high (prod_reg_ld_high),

.prod_reg_shift_rt (prod_reg_shift_rt),

.done ());

I Unused ports may simply be left out of the port list...bad idea!

I Keep your intent clear!

I Careful formatting of names, parenthesis and commas makes it easy
to catch errors.

Modules, ports, instantiation
I How are lower level modules connected if a port definition has not

created the wire?
I In the upper-level module, wires are declared; usually near the

beginning of the module.

module mult3(

input reset ,

input clk ,

input [31:0] a_in ,

input [31:0] b_in ,

input start ,

output logic [63:0] product ,

output logic done);

// declare internal wires

logic [31:0] reg_a; //output , multiplicand reg

logic [31:0] prod_reg_high; //output , upper half of product reg

logic [31:0] prod_reg_low; //output , lower half of product reg

logic prod_reg_ld_high; //load , upper half of product reg

logic prod_reg_shift_rt; //shift product regright

//lots more code goes here

endmodule

Modules, ports, instantiation

I Format of wire declaration is: type width[MSB:LSB] wire name;

I Width is optional

logic [31:0] prod_reg_low; // lower half of product register

I If no width is given, the wire is assumed to be a single conductor.

I If width is given, a bus is created of that width. Busses are groups
of logically related wires.

Modules, ports, instantiation

I Parametrization of modules allows for code reuse

I In the module declaration, the keyword ”parameter” is optional

//a generic width register declaration

module multi_reg #(parameter width =8) (

input reset

input clk

input enable

input data_in [width -1:0]

output logic data_out [width -1:0]

)

\\

\\ description of register goes here

\\

endmodule

Modules, ports, instantiation

I The parametrized register could be instantiated like this:

module top_module;

logic [31:0] data_out;

wire reset , clk , enable , data_in;

// instantiate register and override width to 32 bits

multi_reg #(. width (32)) multi_reg_0(

.reset (reset),

.clk (clk),

.enable (enable),

.data_in (data_in),

.data_out (data_out));

endmodule

Modules, ports, instantiation

I Verilog modules...
I provide a coarse-grain structuring mechanism
I contain RTL logic or other modules
I provide an abstraction mechanism via complexity hiding
I provide a way for design reuse

I Question: How is a Verilog module different from a C function?

